
Decoding the MITRE Engenuity ATT&CK Enterprise Evaluation:
An Analysis of EDR Performance in Real-World Environments

Xiangmin Shen
Northwestern University
Evanston, Illinois, USA

xiangminshen2019@u.northwestern.edu

Zhenyuan Li
Zhejiang University
Hangzhou, China

lizhenyuan@zju.edu.cn

Graham Burleigh
Northwestern University
Evanston, Illinois, USA

grahamburleigh2022@u.northwestern.edu

Lingzhi Wang
Northwestern University
Evanston, Illinois, USA

lingzhiwang2025@u.northwestern.edu

Yan Chen
Northwestern University
Evanston, Illinois, USA

ychen@northwestern.edu

ABSTRACT
Endpoint detection and response (EDR) systems have emerged as
a critical component of enterprise security solutions, effectively
combating endpoint threats like APT attacks with extended lifecy-
cles. In light of the growing significance of endpoint detection and
response (EDR) systems, many cybersecurity providers have devel-
oped their own proprietary EDR solutions. It’s crucial for users to
assess the capabilities of these detection engines to make informed
decisions about which products to choose. This is especially ur-
gent given the market’s size, which is expected to reach around 3.7
billion dollars by 2023 and is still expanding. MITRE is a leading
organization in cyber threat analysis. In 2018, MITRE started to
conduct annual APT emulations that cover major EDR vendors
worldwide. Indicators include telemetry, detection and blocking
capability, etc. Nevertheless, the evaluation results published by
MITRE don’t contain any further interpretations or suggestions.

In this paper, we thoroughly analyzed MITRE evaluation results
to gain further insights into real-world EDR systems under test.
Specifically, we designed a whole-graph analysis method, which uti-
lizes additional control flow and data flow information to measure
the performance of EDR systems. Besides, we analyze MITRE eval-
uation’s results over multiple years from various aspects, including
detection coverage, detection confidence, detection modifier, data
source, compatibility, etc. Through the above studies, we have com-
piled a thorough summary of our findings and gained valuable
insights from the evaluation results. We believe these summaries
and insights can assist researchers, practitioners, and vendors in
better understanding the strengths and limitations of mainstream
EDR products.

CCS CONCEPTS
• Security and privacy → Systems security; • General and
reference → Evaluation.
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1 INTRODUCTION
The digital revolution dramatically changed human life and brings
new risks into daily life. Driven by profit, attackers in cyberspace
have organized increasingly sophisticated attacks that affect many
organizations and large corporations such as Siemens, Target, and
Equifax. These attacks resulted in millions of consumers’ data be-
ing leaked [7, 9, 11] and other losses. Traditional network-based
prevention and detection approaches can barely deal with these ad-
vanced attacks. Therefore, endpoint-based detection and response
solutions (EDR) and extended solutions (XDR) receive extensive at-
tention in academia and industry. The market capitalization for the
top 37 EDR companies has reached over 320 billion U.S. dollars [12]
by 2022, the market size of 3.7 billion U.S. dollars [1]. Meanwhile,
both market capitalization and size are expected to grow fast.

As the number of homogeneous EDR products increases, it be-
comes increasingly difficult for users to choose the appropriate
product. Fair third-party evaluations with detailed interpretations
of results are therefore necessary. The challenges of conducting
such evaluations are three-fold. Firstly, the evaluation methodol-
ogy should be general enough to allow broad participation. The
significance of the evaluation will be affected if its methodology
only applies to a small set of security solutions. Secondly, the eval-
uation should perform realistic and various attack emulations. The
attack emulations in the laboratory setting are simple and have
little variety. Sometimes, the attack information is even known
before the evaluation, making it possible for the defense team to
make ad-hoc configuration adjustments. Such attack emulations
can not reveal the actual performance of endpoint security solutions
against real-world threats. Finally, the evaluation results should be
reported with comprehensive interpretation. Without appropriate
metrics and objective interpretation, the evaluation results are hard
to understand, possibly leading to biased interpretation.
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Although much effort has been made toward establishing a norm
for security solutions, there is still no substantial benchmark in
the security field. Several for-profit companies and organizations
present their own evaluation results [6, 19]. However, their method-
ologies are not transparent and could be biased for commercial rea-
sons. In academia, several recent benchmark works [3, 15–17, 45]
focus on generating new or improving existing datasets. Although
they are crucial initial steps, equally-important interpretations of
evaluation results are still missing. Several other benchmarking
works [22, 30] attempt to expand the explainability of evaluation
results. But their methodologies are specific to the target systems
or platforms, making their evaluation methodologies and results
not transferable.

To standardize security evaluations, the MITRE Corporation
has been conducting annual APT emulations to evaluate various
security solutions based on its ATT&CK framework [33] since 2018.
In each round of evaluation, MITRE will select one or more real-
world APT groups and reconstruct their typical attack chains in
controlled environments. The EDR products will be deployed in
these environments in advance. And the results will be collected and
published by MITRE to summarize their performance. The results
list the attack steps characterized by MITRE ATT&CK techniques
in attack emulations. For each EDR system, MITRE publishes its
detection and protection performance on attack steps. The detection
performance is described with MITRE-defined detection categories,
indicating the amount of contextual information the EDR system
provides with the alarm. The protection performance is illustrated
by the step at which the attack is blocked.

While the datasets from MITRE’s evaluation are valuable, the
presentation of evaluation results has some apparent defects, pre-
venting security practitioners from benefiting directly. These prob-
lems include missing whole-graph analysis, lacking comprehensive
interpretation, and inconsistent evaluation framework. Concretely,
MITRE only focuses on single-step detection results. However, the
attacks that EDR systems fight against are sophisticated and in-
volve multiple steps. EDR systems must consider the entire kill
chain to provide satisfying detection and response services. There-
fore, the whole-graph analysis capability is crucial in evaluating
EDR systems. Apart from conducting attack emulations and collect-
ing results, interpreting the results is equally or not more critical
to EDR system evaluation. However, MITRE makes minimal effort
in interpreting the results. Lacking comprehensive interpretation
prevents users from getting direct insights from the results and
could lead to biased interpretations for vendors and customers.
MITRE has only conducted four evaluations so far. Understandably,
its methodology has evolved, leading to several inconsistencies in
the published results. Inconsistencies like these can be burdensome
for users, forcing users to investigate the difference in every year’s
methodology.

To address these problems, we propose analysis methodologies
on the MITRE evaluation dataset to perform fine-grained whole-
graph analysis and holistic assessments of EDR systems’ capabili-
ties. Then, we apply our methodology to analyze MITRE evaluation
datasets. We investigate all attack scenarios and construct causal
relationship attack graphs to present causal relationships between
attack steps. We evaluate EDR systems’ attack reconstruction capa-
bility by conducting the connectivity analysis, examining whether

the EDR system can reconstruct the complete attack kill chain. We
also assess EDR systems’ response capability via the effectiveness
analysis. In the effectiveness analysis, we use protection perfor-
mance as an indicator. Specifically, we examine at which step each
EDR system responds to the attack and determine if the EDR system
is effectively protecting the host. Moreover, we discuss the eval-
uation results from several practical perspectives to measure the
detection and protection performance of individual techniques and
EDR systems, including detection coverage, detection confidence,
detection quality, data source, and compatibility.We also investigate
the trend of performance change from these perspectives.

In summary, this paper makes the following contributions:
• We design and implement new analysis methods to systemically
interpret MITRE ATT&CK evaluation’s results, with evaluation
dimensions including whole-graph analysis that explores the
correlation capability of EDR systems and additional metrics to
capture aspects of the evaluation results not covered by MITRE.

• We reconstruct several attack scenarios used in MITRE eval-
uation and apply whole-graph analysis to examine EDR sys-
tems’ attack reconstruction and behavior correlation capabili-
ties, which reveal whether an EDR system can effectively detect
and respond to attacks.

• We propose a new evaluation metric and identify and highlight
flaws in EDR systems. We also pinpoint a list of findings to shed
light on areas that require improvement and offer suggestions
to enhance the performance of EDR systems.

2 BACKGROUND
2.1 MITRE ATT&CK Evaluation
MITRE ATT&CK Evaluation is an APT emulation conducted yearly
by MITRE Corporation, started in 2018. Its participants include
most leading security companies, such as Palo Alto Networks,
Fortinet, and CrowdStrike. Each evaluation emulates attacks from
well-known APT groups like APT3, APT29, and FIN7. Contrary
to other attacks like malware and phishing, APT attacks are more
complicated, involving multiple stages aiming for specific tasks.
Together, those stages form a kill chain to achieve the final goals,
such as stealing sensitive information or destroying valuable prop-
erties. The MITRE Corporation has established a set of Tactics,
Techniques, and Procedures (TTPs) [34] to outline each stage of the
emulation process, which serve as a foundation for organizing steps
in a kill chain. Tactics divide attack steps into 14 general stages,
while techniques further distinguish attack steps according to the
specific approach. In some cases, each technique can have associ-
ated sub-techniques, with additional details necessary to identify
them accurately. Attacks performed in evaluations are illustrated
step-wise, with individual steps associated with the techniques de-
scribed above. Additionally, the information provided for each step
in detection tests includes detection categories and modifiers, if
applicable. The detection categories include the following types.

(1) Not Applicable: The EDR system does not deploy a sensor on
the given platform and thus has no visibility.

(2) None: The EDR system deploys sensors on the given platform,
but no data is available to show the event happened.

(3) Telemetry: The EDR system knows the event happened but
is unsure if they are malicious.



Decoding the MITRE Engenuity ATT&CK Enterprise Evaluation: An Analysis of EDR Performance in Real-World Environments AsiaCCS ’24, July 1–5, 2024, Singapore

(4) General Behavior: The EDR system knows the event hap-
pened and believes they are malicious. However, the system
is unsure why and how the action was performed.

(5) Tactic: The EDR system knows the event happened and be-
lieves they are malicious. The system knows why the action
was performed but is unsure how the action was performed.

(6) Technique: The EDR system knows the event happened and
believes they are malicious. Additionally, the system knows
why and how the action was performed.

In addition to the detection categories, modifiers provide more
context about the detection. The modifiers include delayed and
config change.

(1) Delayed means the alert appears significantly late compared
to the time when the attack step happens.

(2) Config change means the alert shows up due to ad-hoc con-
figuration modifications.

During the latest two evaluations, a new scenario was introduced
to test the protection ability of EDR systems. The results of each
step in the protection tests are categorized into one of the following
protection categories.

(1) Not Applicable: The EDR system does not deploy a sensor on
the given platform and thus has no visibility.

(2) None: The EDR system deploys sensors on the given platform
but does not block the malicious behavior.

(3) Blocked: The EDR system successfully blocked the malicious
behavior.

To quantify the detection performance of EDR systems, MITRE
defines four metrics to summarize each EDR system’s capabilities
at a high level: Visibility, Telemetry Coverage, Analytic Coverage and
Detection Count.

(1) Telemetry Coverage is the number of detected steps with the
telemetry level detection. This is the minimum requirement
for a step to be visible, as telemetry detection only confirms
an event has happened but wouldn’t trigger an alarm.

(2) Analytic Coverage is the number of detected steps with some
contextual information like the intention and the approach
taken. Since only detection above the telemetry level is re-
ported as malicious behavior, the analytic coverage reflects
a system’s ability to detect threats from the available data.

(3) Visibility is the number of steps with at least a telemetry
detection. Note that this metric counts the number of steps
in the union of Telemetry Coverage and Analytic Coverage.

(4) Detection Count is the total number of detection made in the
attack campaign. This number could be larger than the total
steps, as multiple detections in different categories might be
reported at a certain step.

2.2 Limitations of ATT&CK Evaluation
The MITRE evaluation has made significant contributions to estab-
lishing an evaluation standard for EDR solutions. However, many
limitations still need to be addressed and improved upon.

2.2.1 Missing whole-graph analysis. The security field has been
shifting from single-point detection to graph-based detection. The
single-point detection can only detect a single step in an attack with-
out providing an overview of the entire attack pattern. In contrast,

whole graph-based detection utilizes contextual information to con-
struct a comprehensive graph that depicts behavior and searches
for threats. For modern endpoint APT defense, relying solely on
single-point detection is inadequate for two reasons: Firstly, single-
point detection is vulnerable to complex and sophisticated attacks
that can evade traditional detection methods. Attackers can use
multiple techniques to bypass single-point detection. Secondly,
single-point detection focuses only on one aspect without consid-
ering contextual information, such as control and data flow, which
limits perspective and could lead to false positive alarms.

Provenance graph-based detection [8, 26] overcomes these short-
comings by taking additional contextual information into account
and obtaining a comprehensive view of the endpoint. Even if a
single step is not identified as malicious from a single-point per-
spective, it can still be determined as part of the kill chain through
control flow and data flow connections with other malicious be-
haviors. Moreover, using such correlations, malicious behaviors
can be better distinguished from benign activities, reducing the
number of false alarms. Most state-of-the-art endpoint detection
work incorporates provenance graphs and their derivatives as part
of their framework.

As discussed in the §2.1, MITRE uses a sequence of techniques
to describe attack scenarios. However, the execution of kill chains
in attack emulations hardly follows a linear pattern. Although such
sequential representation emphasizes the detection performance
on single steps, it obscures the causal and spatial aspects of the
attack scenario. Fig. 1 shows an example of the attack graphs we
constructed from an attack emulated in Wizard Spider+Sandworm
(2022) evaluation. Without the graph, it’s hard to understand the im-
portance of each step in event correlation. For instance, rundll32.exe
loads the downloaded malicious DLL file adb.dll to perform the
following attack steps at step ⑧. Missing this step in the scope
makes it hard to correlate the following attack steps with the previ-
ous setup steps. However, missing other less important steps, like
winword.exe loading a malicious DLL file VBDUI.DLL at step ②

does not affect the connectivity nor the causal relationship. With
the help of the graph, we can investigate 1) whether the EDR sys-
tems can detect all crucial steps and 2) whether they can correlate
events along the attack chain to reconstruct the attack chain and
protect the system.

2.2.2 Lacking comprehensive interpretation. Another crucial part
missing in MITRE evaluations is comprehensive interpretations
of the results. Multiple companies claim they have achieved per-
fect or near-perfect performance in these evaluations. However,
such claims contradict the results presented on the MITRE website.
CrowdStrike [13] claims to have received 100% detection coverage
across all 20 steps of the Carbanak+Fin7 evaluation. However, such
a claim does not align with the evaluation results. Specifically, the
‘20 steps’ are comprised of 174 substeps, where CrowdStrike failed
to catch 22 out of 174 substeps and failed to generate alarms for
88 out of 152 visible steps. Other vendors have exhibited similar
results.

Lacking clear interpretation leave room for EDR vendors to
twerk the results, ironically going against the original intention of
MITRE evaluation. Thus, it is necessary to add a comprehensive
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RegSetValueExA()
RtlGetVersion()
GetNativeSystemInfo()
RtlGetNtProductType()
CreateToolHelp32Snapshot()

(a)

explorer.exe winword.exe VBEUI.DLL

cmd.exe

cscript.exe

adb.vbs

① T1204.002  ② T1059.005

③ T1105 ④ T1059.003

⑤ T1047 

powershell.exe
⑥ T1059.001 ⑤ T1047 

rundll32.exe

adb.dll

⑦ T1105

⑧ T1218.011 

192.168.0.4 (Attacker)

⑨ T1071.001 

10.0.0.7 (Victim)

cmd.exe powershell.exe
WinAPI

⑩ T1547.001

⑪ T1082

⑫ T1057
Outlook.dll

⑬ T1105 

OUTLOOK.exe

⑭ T1552 ⑮T1114.001

(b)

① T1204.002  
 (vis: 100%, block: 9/22) 

② T1059.005  
 (vis: 97.09%, block: 11/22) 

③ T1105
 (vis: 96.12%, block: 15/22)

④ T1059.003 
(vis: 97.09%, block: 19/22)

⑤ T1047
 (vis: 83.33%, block: 19/22)

⑥ T1059.001 
(vis: 97.09%, block: 20/22)

⑦ T1105
 (vis: 96.12%, block: 20/22)

⑧ T1218.011 
(vis: 100%, block: 20/22)

⑨ T1071.001 
(vis: 64.29%, block: 20/22)

⑩ T1547.001 
(vis: 96.67% , block: 20/22)

⑪ T1082
 (vis: 71.51%, block: 20/22)

⑫  T1057 
(vis: 45%, block: 20/22)

⑬ T1105
 (vis: 96.12%, block: 20/22)

⑮ T1114.001 
(vis: 100%, block: 21/22)

⑭ T1552 
(vis: 87.84%, block: 21/22)

Figure 1: The attack graphs for scenario 1 in Wizard Spi-
der+Sandworm (2022) evaluation. (a) The actual attack graph.
The nodes are system entities like processes and files. The
edges represent system events characterized by MITRE
ATT&CK techniques IDs. The numbers denote the order of
events. (b) The causal relationship attack graph. The nodes
are attack steps characterized byMITREATT&CK techniques
IDs. The edges represent causal relationships between attack
steps. The nodes also contain the visibility of their corre-
sponding techniques among all EDR systems and the number
of EDR systems that blocked this attack before and at this
step.

and objective interpretation on top of the MITRE Evaluation raw
results.

2.2.3 Inconsistent evaluation framework. The MITRE Engenuity
started the evaluation project in 2018. Since then, the evaluation
approaches and terminology have been changing yearly, making
it hard to compare the detection performance from different eval-
uations. For example, in the first APT3 evaluation, there are six
detection categories, including None, Telemetry, Indicator of Com-
promise, Enrichment, General Behavior, and Specific Behavior. In
the most recent Wizard Spider+Sandworm (2022) evaluation, there
are five detection categories, including None, Telemetry, General,
Tactic, and Technique. Although None and Telemetry remain the
same, MITRE didn’t map the rest of the detection categories. Be-
sides, MITRE has used several versions of detection modifiers and
even changed the definition of performance metrics over the years.
In the most recent Wizard Spider+Sandworm (2022) evaluation,
MITRE changed how detection numbers are counted. Instead of

MITRE Evaluation ResultsAPT Emulation Procedures
Data 
Source

Analyses

Whole-graph Analysis
• Connectivity
• Effectiveness

Finding 1- 2

Overall Trend Analysis
• Detection Coverage
• Detection Confidence
• Detection Quality
• Data Source
• Compatibility

Finding 3-5

Finding 6
Finding 7
Finding 8
Finding 9

Figure 2: An overview of our analysis methodologies.

counting multiple detections on a single step, MITRE only recorded
the detection with the most contextual information. In this way, vis-
ibility is the sum of telemetry and analytic coverage. The detection
count metric is deleted since it is always the same as visibility.

Thus, in this paper, to bridge the gap between direct results
and insight, we aim to provide a comprehensive interpretation of
MITRE Engenuity Evaluation results. We also try to extract the con-
sistent aspects from the different terminology used in each year’s
evaluation to establish a compatible interpretation framework to
compare evaluation results from different years.

3 INTERPRETATION METHODOLOGY
3.1 Overview
We start this section by introducing the dataset in §3.2. Then, we
elucidate two approaches to analyze this dataset: (1) whole-graph
analysis and (2) overall statistical and trend analysis. Fig. 2 present
an overview of our analyses. In the whole-graph analysis, we stud-
ied techniques provided in the evaluation results and APT emula-
tion procedures published by MITRE Center for Threat-Informed
Defense [18] to construct several causal relationship attack graphs.
Via connectivity analysis and effectiveness analysis of the causal
relationship attack graphs, we investigate the EDR systems’ attack
graph-level correlation and reconstruction capabilities. In the over-
all trend analysis, we investigate the detection performance of EDR
systems on various techniques through several perspectives over
the years. We aim to provide insights into the strengths and areas
requiring enhancement within intrusion detection. We present the
detailed methodologies in §3.3 and §3.4, respectively.

3.2 Dataset
The MITRE Engenuity has conducted four evaluations so far. Each
evaluation selects one or two Advanced Persistent Threat (APT)
groups and emulates several attack scenarios using the APT groups’
toolkits. In total, attack scenarios consist of hundreds of steps in-
volving dozens of techniques. For every attack scenario, MITRE
Engenuity will conduct a detection test and a protection test. In
detection tests, the attack kill chain will be executed without inter-
vention. MITRE will assess whether every attack step is detected
and the extent of contextual information provided during detection.
While in protection tests, the defense team can intervene and stop
the consequential steps in the kill chain. In this way, MITRE can
assess whether an attack is contained or blocked and at which step.
Therefore, the published dataset presents the results in a step-wise
manner. For the detection results, data entries specify the following
information about an attack step: (1) the MITRE ATT&CK tech-
nique that corresponds to the step, (2) whether the step is detected
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Table 1: MITRE Engenuity Dataset Summary

Round of Evaluation Participants Steps Techniques # of Detection Made
APT3 (2018) 12 136 51 1970
APT29 (2019) 21 134 53 3982
Carbanak+FIN7 (2020) 29 174 46 7350
Wizard Spider+Sandworm (2022) 30 109 46 3098
Total 37 N/A 82 16.4k

and how much contextual information is provided by the EDR sys-
tem, (3) the data sources associated with detection, and (4) other
miscellaneous information. The protection results also contain the
MITRE ATT&CK technique corresponding to the step. Besides, in-
stead of the detection-related information, the results show what
kind of protection is triggered at each step. The definition of detec-
tion and protection categories is detailed in §2.1. Table 1 outlines
detailed information about the dataset associated with each cam-
paign. Overall, we analyzed 16.4k detection results from all vendors
in all published evaluation results.

3.3 Whole-graph Analysis
3.3.1 Attack Graph Construction. Due to the importance of prove-
nance graph-based detection capabilities, we create a causal rela-
tionship graph model for each scenario to replace the sequential
layout of MITRE evaluation results. A causal relationship attack
graph is a directed graph in which the node represents an attack
step in the kill chain, and the edge denotes the causal relationship
between two attack steps. Constructing a causal relationship attack
graph model involves nodes construction and edges construction.

Since MITRE only describes each step in terms of techniques,
our initial step is to thoroughly examine each step’s corresponding
procedure, which is subsequently classified into descriptive and
causal categories. The descriptive techniques solely describe spe-
cific features of a step without establishing any causal connections
with other entities (e.g., Encrypted Channel). In contrast, the causal
techniques interact with other entities, such as creating a process
or writing to a file, thereby establishing causal relationships with
other steps (e.g., Ingress Tool Transfer). All steps corresponding
to causal techniques become the nodes in our causal relationship
attack graph.

After classifying each step, we examine the subject and object of
each step to establish causal relationships. When we connect the
subject to the object, the edges are constructed in the graph. We
generally consider two kinds of causal relationships: control flow
and data flow. Firstly, the control flow creates causal relationships
via process creation. If an attack step is performed by a process
created in a previous step, then the two steps establish a control
flow causal relationship. Secondly, the data flow creates causal
relationships via communication over files. If an attack step reads
a file written in a previous step, the two steps establish a data flow
causal relationship. Fig. 1(b) and 5(b) in the Appendix show two
examples of causal relationship attack graphs.

3.3.2 Attack Graph Analysis. After constructing a causal relation-
ship attack graph, we analyze EDR systems’ detection and protec-
tion performance from the attack graph perspective. We aim to
answer the following two questions: (1) whether the EDR systems

can fully reconstruct the attack kill chain; (2) whether the EDR
systems can effectively aggregate behaviors along the kill chain to
understand its severity. We answer the first question by conducting
a connectivity analysis on the causal relationship attack graphs con-
structed from the detection results. As for the second question, we
analyze the protection performance to examine the EDR systems’
effectiveness. An effective EDR system should detect and respond
to threats at the appropriate time. We study several attack cases
and investigate when EDR systems block the kill chain.
Connectivity Analysis: We examine the kill chain visibility by
counting the connected components in the causal relationship at-
tack graph and comparing them with the ground truth. Suppose
a campaign involves attacks on three individual hosts, leading to
three separate kill chains among those hosts. If the number of con-
nected components on the graph is more than three, one or more
kill chains are broken into multiple small segments. If the number
is less than three, at least one kill chain is completely missing in
the detection. If the number equals three, we check if the three
segments match the ground truth. In this way, we use the con-
nected components as a metric to evaluate EDR systems’ attack
reconstruction capability.
Effectiveness Analysis: We examine which step a blockage is
triggered given each vendor’s detection results to analyze how ef-
fectively the EDR systems use the graph information. We assume
EDR systems are knowledgeable about the maliciousness of differ-
ent behaviors, and they would block the attack once the severity
of existing behaviors accumulates to a certain threshold. We select
a few attacks to perform case studies. For each case, we manually
determine a step on the attack kill chain when the malicious in-
tention is evident as the baseline. Then, for each EDR system, we
compare at which step the attack is blocked with the baseline. If
the attack is blocked earlier than the baseline, it suggests the EDR
system adopts an aggressive strategy in defense response. In this
case, benign behaviors could be incorrectly classified as malicious,
leading to unpredictable problems. If the attack is blocked later than
the baseline, it suggests the EDR system cannot react to threats in
time. Such delay could allow the attacks to happen unhindered.

3.4 Overall Trend Analysis
Besides analyzing the evaluation results on the attack graph, we also
investigate the detection and protection performance of individual
techniques and EDR systems over the years.

3.4.1 Detection Coverage. MITRE presents the evaluation from the
vendors’ perspective. Each vendor’s performance is reflected by its
analytic coverage, telemetry coverage, and visibility on all attack
steps. We want to investigate EDR systems’ performance from an-
other perspective: how well all vendors can detect each technique.
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We analyze the detection coverage of a technique from two per-
spectives: visibility and analytic coverage. Like MITRE’s metrics,
we determine the visibility of a technique by calculating the ratio of
EDR systems aware of the corresponding behaviors. We determine
the analytic coverage of a technique by calculating the percentage
of the vendors that successfully detected the corresponding step.

(1) Visibility

𝑉 (𝑥) = 𝑆𝑣 (𝑥)
𝑆𝑡 (𝑥)

Where 𝑥 is a specific EDR system or a specific technique.
𝑉 (𝑥) is the visibility score of the given 𝑥 . 𝑆𝑣 (𝑥) is the num-
ber of visible substeps of the given 𝑥 , and 𝑆𝑡 (𝑥) is the total
substeps related to the given 𝑥 .

(2) Analytic Coverage

𝐴(𝑥) = 𝑆𝑎 (𝑥)
𝑆𝑣 (𝑥)

Where 𝐴(𝑥) is the analytics score of the given 𝑥 , 𝑆𝑎 (𝑥) is
the number of detections beyond the telemetry level of the
given 𝑥 , and 𝑆𝑣 (𝑥) is the number of visible substeps of the
given 𝑥 .

3.4.2 Detection Confidence. Although the three metrics adopted
from MITRE evaluation provide helpful information, some aspects
are missing. Specifically, those metrics do not take different detec-
tion categories into account. In other words, a system reporting
all malicious behaviors in the general behavior level would receive
identical scores as a system reporting all malicious behaviors in
the technique level. We propose an additional metric: confidence to
address this issue.

Confidence is a weighted score calculated by multiplying the
percentage of detection made from different detection methods
by the corresponding weight multiplier. A high confidence score
suggests more details about the malicious behavior are provided.

𝐶 (𝑥) =
4𝐷𝑡𝑒 (𝑥) + 3𝐷𝑡𝑎 (𝑥) + 2𝐷𝑔𝑒 (𝑥) + 𝐷𝑡𝑒𝑙 (𝑥)

4𝐷𝑣 (𝑥)
Where 𝐶 (𝑥) is the confidence score of a given technique or EDR
system 𝑥 . 𝐷𝑡𝑒 (𝑥) is the number of technique detection of the given
𝑥 ,𝐷𝑡𝑎 the number of tactic detection of the given 𝑥 ,𝐷𝑔𝑒 the number
of general behavior detection of the given 𝑥 , 𝐷𝑡𝑒𝑙 the number of
telemetry detection of the given 𝑥 , and 𝐷𝑣 the total visible substeps
of the given 𝑥 . The multiplier associated with each variable indi-
cates the granularity of the detection results, with four being the
most detailed and one being the most general. Since MITRE evalu-
ation provides four levels of granularity for detection results, we
intuitively use 1 through 4 as the multipliers. They can be further
adjusted if more detailed data is available.

3.4.3 Detection Quality. Another aspect missing from MITRE-
provided metrics is the negative modifiers. A system reporting
all alarms with significant delay or configuration change receives
identical scores as a system reporting all alarms with no delay and
no configuration change. To examine the presence of modifiers
quantitatively, we propose a quality metric for techniques and EDR
systems. For a technique, the quality score is the ratio of visible
substeps without negative modifiers to the total visible substeps.

A high-quality score implies low detection latency and adequate
out-of-box usability.

𝑄 (𝑥) = 𝑆𝑚 (𝑥)
𝑆𝑣 (𝑥)

Where 𝑆𝑚 (𝑥) is the number of visible substeps without negative
modifiers of a given technique or EDR system 𝑥 , and 𝑆𝑣 (𝑥) is the
total visible substeps of the given 𝑥 . We treat all the negative mod-
ifiers equally since they are all related to manual adjustments or
analyses.

3.4.4 Data Source. Besides the quantitative analysis specified above,
we investigate the data sources used in evaluations via a rather
qualitative approach. Specifically, we compare the data sources used
in each year’s evaluation to examine the scope of data sources used
in EDR systems. We also discuss the frequency of a data source
used in each evaluation to investigate the importance of the data
source.

3.4.5 Compatibility. We investigate EDR systems’ compatibility
from two perspectives: availability and performance. We examine
the availability by calculating the ratio of EDR systems that sup-
port a given platform. Since MITRE Engenuity evaluations only
involved Windows and Linux platforms so far, we will focus on
the availability of these two platforms. Besides, we compare the
detection performance on different platforms.

4 WHOLE-GRAPH ANALYSIS
Sincewhole-graph analysis is specific to the attack scenarios, we use
attack scenarios in the Wizard Spider+Sandworm (2022) evaluation
as the cases to perform our whole-graph analysis. We constructed
casual relationship attack graphs at the procedure level for all attack
scenarios in Wizard Spider+Sandworm Evaluation. Fig. 1 and 5 in
the Appendix present two examples of constructing the causal
relationship attack graphs.

4.1 Connectivity Analysis
We analyze the attack graph connectivity by calculating the number
of connected components in the casual relationship attack graph
generated from the visible steps of each vendor and comparing it
with the ground truth. There are six hosts involved throughout
the attack emulation. Thus, there should be six segments. One of
the six hosts runs under the Linux environment, and the other five
are under the Windows environment. 22 vendors support Linux
environment data collection and detection out of 30 participants.
Therefore, we divide the vendors into two groups according to their
Linux platform compatibility. Of the 22 vendors that support the
Linux platform, three have more than six segments (Rapid7 has 13,
Cisco has 10, and Cylance has 11). Of the eight vendors that don’t
support the Linux platform, two have more than five segments
(Deep Instinct has nine, and ReaQta has six). 25 out of 30 (83.3%)
participants can obtain a visibly connected subgraph containing
all attack steps. Thus, we conclude that most vendors can see the
connection between attack steps on a graph level.

4.2 Effectiveness Analysis
We analyze all protection evaluation scenarios and discuss two as
case studies to see how effectively the EDR systems use the graph
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Table 2: Summary of Protection Test Results

Test # of Blockage # of Participants Protection Rate
1 21 22 95.5%
2 21 22 95.5%
3 16 22 72.7%
4 12 22 54.5%
5 15 22 68.2%
6 20 22 90.9%
7 9 17 52.9%
8 20 22 90.9%
9 18 22 81.8%

information. Table 2 summarizes the results of nine protection tests.
22 vendors participated in the protection tests. Test 7 is conducted
on Linux. Since five participants didn’t support the Linux platform,
only 17 were in Test 7. Fig. 1 and 5 in the appendix presents the
two cases we will discuss in detail.
Scenario 1: Emotet Initial Compromise, Persistence, and Col-
lection.

Fig. 1 shows a detailed attack graph of this scenario. In this
scenario, the adversary sent a Word document over email, which
contained obfuscated VBA macros that downloaded and executed
a malicious DLL based on the malware Emotet. The malicious DLL
then established a command and control (C&C) session with the
adversary server. Besides, it achieved persistence by modifying the
registry via the WinAPI function RegSetValueExA(). Later, the
malicious DLL collected process information by calling the WinAPI
functions CreateToolhelp32Snapshot() and Process32First().
Finally, it downloaded another malicious DLL to search for creden-
tials in Outlook.

21 out of 22 EDR systems blocked this attack at different steps.
Most blockages happen at the first step when the Explorer executes
the Word document. This behavior is already pretty suspicious,
as it downloaded an untrusted file. In the following steps, Word
downloaded a malicious DLL file and a malicious VBS file and then
executed it. The malicious intention is evident at this step, as this
is a typical download and execution behavior. However, not all
EDR systems responded to it: 19 EDR systems blocked the process,
while three EDR systems either waited until later to block or didn’t
react. We checked their connectivity and found they could see
the connected attack steps corresponding to this protection test.
Although they have reasonable detection performance on single
steps, these EDR systems failed to chain steps together to better
understand the kill chain to provide appropriate protection.
Scenario 2: TrickBot Execution, Discovery, and Kerberoast-
ing.

Fig. 5 in the Appendix shows a detailed attack graph of this
scenario. In this scenario, the adversary authenticated into the
victim’s host using stolen credentials from scenario 1. Then, the
adversary downloaded and executed a malicious EXE derived from
TrickBot. The malicious EXE first established a C&C session with
an adversary-controlled server. Then, it collected various system
information by executing shell commands. Finally, it downloaded
a tool called rubeus to perform Kerberoasting [14], which could
steal encrypted credentials.

21 out of 22 EDR systems blocked this attack at different steps. In
this scenario, the adversary connected to the target via RDP protocol

as the first step. Looking at this step alone, it could be normal
behavior. However, in the latter steps, the adversary downloaded a
malicious file and executed it to establish a communication channel
with the C&C center. The malicious intention is evident at this step
as it downloaded and executed an unknown file and established
a suspicious outward connection. Only half of the EDR systems
decided to block the process at steps 3 and 4. The rest of the EDR
systems block the process when collecting system information in
the later steps.

Although scenarios 1 and 2 had the same protection rate eventu-
ally, there is a noticeable delay in scenario 2 compared to scenario
1. One reason could be the difference in step visibility. As shown
in Fig. 1(b) and 5(b), early steps in scenario 1 had better visibility
than early steps in scenario 2. The third step in scenario 2 only had
64.29% visibility, making it hard for EDR systems to gather enough
information and react.

Finding 1: Attack graph level correlation capabilities are neces-
sary to achieve good defense because isolated single steps cannot
provide enough confidence for EDR systems to respond.

The steps in Tests 3, 4, 5, and 6 happened as a connected kill
chain on the same host in the detection test but are isolated into dif-
ferent test scenarios in the protection tests. This gives us a chance
to investigate how isolated scenarios can affect defense. Since iso-
lated scenarios contain fewer steps for correlating, the defense and
response decisions primarily rely on single-step detection. We ob-
served a significant drop in protection rate in tests 3, 4, and 5 as
shown in Table 2. Test 4 only contained two steps that dumped
system information (C disk and the registry) and received the low-
est protection rate. Although dumping the entire C disk and the
registry seems suspicious, such behaviors alone are usually not
malicious enough to be escalated to alarms. Admittedly, we ob-
served many cases in which EDR systems take action as soon as a
suspicious file is downloaded and executed. Still, such a download
and execution pattern wouldn’t work well against file-less attacks,
living-off-the-land attacks, and other evasion techniques.

Furthermore, some evidence shows EDR systems with poor per-
formance didn’t have graph-level correlation capabilities. For ex-
ample, the detection screenshots from vendors like Deep Instinct
didn’t present any graph-level information along with the detection.
In contrast, the detection screenshots from vendors like Sentinel
One complement the detection with kill chain information on a
graph.

Finding 2: Although some EDR systems demonstrated good
attack graph level correlation capabilities, we still identified three
practical problems: delay in protection, lack of protection, and
lack of cross-host correlation capability.

Delay in protection problem exists ubiquitously in all scenarios.
In the cases we analyzed, the adversary will log into the target
and download a payload. More than half of the protection happens
here, but the rest would happen either after the adversary had done
some malicious behaviors or not at all. We checked their visibility.
Most of them can see a connected attack chain. Those EDR systems
require a longer kill chain to accumulate confidence before blocking
a process. Such a mechanism prevents them from reacting quickly
to threats. Sometimes, this even prevents them from reacting at all.
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Lack of protection problemswould still occurwhen some stealthy
steps are applied. Besides requiring a longer chain to reach their
confidence level, some EDR systems are susceptible to attack eva-
sion techniques. For example, Test 3 modified the registry to achieve
persistence. Tests 4 and 5 mimic system administrators to dump
system information and modify system configurations. These tests
applied more stealthy and sophisticated approaches than other tests,
thus receiving a relatively low protection rate.

Attack graph level correlation should be applied on individual
hosts and across hosts. In this evaluation, the adversary used the
same tools and adopted similar attack patterns on different hosts in
tests 2 and 3, respectively. Given test 2 happened before test 3, the
protection performance in test 3 is not better than test 2. It suggests
the EDR systems could not learn from the happened attacks to react
to similar attacks in the future. Furthermore, no evidence shows
that detection and response mechanisms use information across
hosts to improve defensive performance.

5 OVERALL TREND ANALYSIS
In this section, we examine several perspectives in all available
datasets from MITRE Engenuity to investigate the paradigm of
attacks and defenses in a real-world setting. We mainly analyze the
results from more recent evaluations, especially the Carbanak+Fin7
(2020) and theWizard Spider+Sandworm (2022) evaluations because
they included APT emulations performed on multiple operating
systems and they used a more established taxonomy to describe
evaluation results compared to the previous evaluations.

5.1 Detection Coverage
We calculate the visibility and analytic coverage scores for individ-
ual techniques across the EDR systems participating in the evalu-
ations. The distribution of visibility and analytic coverage scores
from the technique perspective are shown in Fig. 3. We also calcu-
late the visibility and analytic coverage scores for individual EDR
systems as shown in Fig. 4. Then, we use these two metrics to ana-
lyze the overall trend of detection coverage. Moreover, we select a
few EDR systems and techniques that receive excellent or very low
scores and try to analyze the reasons behind them.

5.1.1 Visibility. As shown in Fig. 3 and 4, the distributions of
technique visibility scores and vendor visibility scores are mostly
skewed to the left. The median of technique visibility distribution
from Wizard Spider+Sandworm (2022) evaluation is around 95%,
which means half of the attack steps can be seen by at least 95%
of the EDR systems in evaluations. The median vendor visibility
distribution from the same evaluation is around 85%, suggesting
half of the EDR systems can see more than 85% of the attack steps.
Comparing the visibility score distribution in the three evaluations,
we see an obvious improvement in the median and the lowest score
for both techniques and vendors over the years.

Two techniques in Command and Control (C&C) receive low
scores across the EDR systems in the Carbanak+Fin7 evaluation.
Specifically, only around 40% of the EDR systems can record En-
crypted Channel or Application Layer Protocol communications. In
this evaluation, such communications include transmitting data
over SSH protocol, MSSQL transactions, andHTTPS protocol. Mean-
while, the visibility of other C&C techniques, which establish the

connection via TCP, are all above 80% among the EDR systems.
Based on this observation, we conclude most EDR systems selec-
tively collect network traffic data on the transport layer and ignore
the application layer protocols.

Surprisingly, 15 techniques achieved perfect coverage among all
EDR systems in the Wizard Spider+Sandworm evaluation, includ-
ing six discovery techniques, three Defensive Evasion techniques,
and a few techniques in other tactics. Those techniques involve
manipulating or investigating system configurations and services,
which implies all EDR systems have no trouble monitoring system
configurations and services. In addition, four out of six techniques
in the Execution Tactic receive a visibility score above 90% in the
Carbanak+Fin7 evaluation. Those techniques involve a process load-
ing certain libraries or executing specific commands. We conclude
that all EDR systems emphasize monitoring process loading and
execution so that the techniques related to execution achieve the
best visibility among all techniques.

SentinelOne achieves 100% visibility on all techniques used in
the Carbanak+Fin7 evaluation, while only around 50% of the tech-
niques are visible to AhnLab in the same evaluation. AhnLab hardly
monitors the file system, as most of the techniques associated with
Collection and Credential Access remain invisible to AhnLab. Fur-
thermore, AhnLab does not monitor network activities except for a
few file download behaviors and some TCP connections. It is par-
ticularly interesting that AhnLab can see and even raise alarms on
some file download behaviors by Powershell but remain completely
blind to the rest of the file download behaviors by Powershell from
the same IP.

We observe changes and continuities by comparing the visibility
score between the Carbanak+Fin7 and Wizard Spider+Sandworm
evaluations. Most EDR systems obtain higher visibility scores in
the latter evaluation, especially AhnLab, whose visibility score has
a huge boost from 0.517 to 0.761. This implies the entire industry
has improved in making various behaviors visible. The visibility
difference in techniques is interesting. The two evaluations have
about the same average visibility scores (about 80%). However, some
techniques like Archive Collected Data have a perfect visibility score
in the Carbanak+Fin7 evaluation but only receives a 0.033 visibility
score in the Wizard Spider+Sandworm evaluation, which means it’s
only visible to one out of 30 EDR systems. The dramatic discrepancy
suggests technique is not an appropriate unit for detection cover-
age since the same technique could be implemented with totally
different procedures and consequently require distinct detection
capabilities.

Finding 3:Most EDR systems have good data collection capa-
bility, and this capability is improving every year. In the most
recent Wizard Spider+Sandworm (2022) evaluation, 75% of the
EDR systems can identify more than 80% of the attack steps.

Finding 4: Large discrepancies in visibility for the same tech-
nique in different evaluations suggest that techniques are still
too coarse-grained for detection coverage. A more fine-grained
unit, such as generalized technique implementations, is needed.

5.1.2 Analytic Coverage. As shown in Fig. 3 and 4, analytic cover-
age has significantly improved over the years. In the most recent
Wizard Spider+Sandworm (2022) evaluation, 50% of visible attack
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Figure 3: Technique perspective score distribution of each metric in different evaluations. The metrics are visibility (blue),
analytic coverage (orange), confidence (green), and quality (red) from left to right, respectively.
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Figure 4: Vendor perspective score distribution of each metric in different evaluations. The metrics are visibility (blue), analytic
coverage (orange), confidence (green), and quality (red) from left to right, respectively.

steps would trigger alarms on more than 90% of the EDR systems,
and 50% of the EDR systems would generate alarms for at least
90% of the visible attack steps. Unlike the distribution of visibility,
analytic coverage exhibits a nearly symmetric distribution.

The techniques receiving low analytic scores are mainly in C&C,
Exfiltration, and Collection tactics. Not surprisingly, Archive Col-
lected Data has an analytic coverage score of 0 given its low vis-
ibility score, which means only telemetry detection is made for
this technique in the Wizard Spider+Sandworm evaluation. Other
techniques like Exfiltration Over C&C Channel and several C&C
techniques also received below 50% analytic coverage scores. Al-
though such behaviors might be indistinguishable from everyday
benign behaviors, they could still be identified as a part of a com-
plete attack chain. Thus, detecting these behaviors challenges EDR
systems’ capabilities of assembling attack chains from scattered in-
dividual events. Low analytic coverage scores on those techniques
suggest all EDR systems have room for improvement in their event
correlation capability.

Moreover, the techniques receiving high analytic coverage scores
mostly fall into categories of Defense Evasion and Credential Ac-
cess, including OS Credential Dumping, Inhibit System Recovery and
Process Injection. Such techniques are easy to separate from normal
behaviors as they carry malicious intentions conspicuously.

Comparing the analytic coverage scores between the Carbanak+Fin7
and Wizard Spider+Sandworm evaluations, the analytic coverage
scores have a significant improvement for all techniques as the

average increases from 69.8% to 85.5% and the standard deviation
decreases from 16% to 8%. Techniques in C&C, Exfiltration, and Col-
lection tactics that receive less than 60% analytic coverage scores in
the Carbanak+Fin7 evaluationmostly have higher than 70% analytic
coverage scores in the Wizard Spider+Sandworm evaluation.

Finding 5: Although EDR systems’ ability to determine ma-
licious behaviors improves over time, they struggle to detect
‘living-off-the-land’ threats. Throughout all evaluations, several
techniques, including Encrypted Channel, Exfiltration Over C&C
Channel, and Archive Collected Data, etc., consistently had worse
detection rates. It is hard for EDR systems without event corre-
lation capabilities to discern whether such individual steps are
malicious at the system provenance level.

Moreover, we divide EDR systems and techniques into four quad-
rants according to their visibility and analytic coverage scores for
comparison. As shown in Fig. 6 and 7 in the Appendix.

For EDR systems, the top performers like Sentinel One and Palo
Alto Networks at the top right corner are excellent at visibility and
detection, and the bottom performers like AhnLab at the bottom
left corner need to catch up with both capabilities. Interestingly,
there are some ramifications among the EDR systems in the middle.
The five EDR systems in the top left quadrant, like FireEye, tend
to focus on detection capability. FireEye has way above average
analytics score (90.3% vs. 69.8%) but slightly below average visibility
score (78.2% vs. 80.8%). On the contrary, the six EDR systems in
the bottom right quadrant, like CrowdStrike, tend to put more
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emphasis on visibility capability. CrowdStrike has a higher-than-
average visibility score (87.4% vs. 80.8%) but a lower-than-average
analytic coverage score (46.2% vs. 69.8%).

For techniques, 42 out of 63 falls into the top right quadrant and
the bottom left quadrant, meaning they have comparable visibility
and analytic coverage scores. For instance, Network Share Discovery
has an excellent visibility score (100%) and analytic coverage score
(90.1%), while Exfiltration Over C&C Channel has a poor visibility
score (43.7%) and analytic coverage score (22.6%). Six out of 63
techniques fall into the top left quadrant. Those techniques receive
below-average visibility scores but above-average analytic cover-
age scores. It implies it is hard for EDR systems to collect related
data, but they can be easily identified as malicious behaviors once
visible. For example, Access Token Manipulation receives only a
42.9% visibility score but an 80.6% analytic coverage score. Such
techniques often involve some defense evasion intentions, or it
might be expensive to collect related data, making them naturally
stealthy. 15 out of 63 techniques fall into the bottom right quadrant.
Those techniques receive above-average visibility scores but below-
average analytic coverage scores. It suggests they are easily visible
to EDR systems, but it is hard to associate them with malicious
behaviors. For example, Email Collection has a 95.2% visibility score
but only a 37.5% analytic coverage score. Such behaviors are not
stealthy but blend in with benign behaviors a normal user would
perform.

To sum up, 18 out of 29 EDR systems have comparable visibil-
ity and analytic coverage scores. In comparison, five of the rest
focus more on their detection capability, and six EDR systems lean
towards improving their visibility. 42 out of 63 techniques have
comparable visibility scores and analytic coverage scores. Among
the remaining 21 techniques, six techniques are hardly visible but
easy to detect once they are visible. The other 15 techniques are
easily visible but hard to identify as malicious behaviors.

5.2 Detection Confidence
The layout of confidence scores looks similar to analytic coverage
scores since they reflect the soundness of detection results. How-
ever, we propose the confidence metric in addition to the analytic
coverage metric because the confidence metric takes different de-
tection levels above telemetry into account. As a weighted average,
the confidence score indicates the overall detection level made by
an EDR system or against a technique. Along the spectrum of confi-
dence scores, a 25% confidence score means the detection level is at
telemetry on average; a 50% confidence score means the detection
is at General Behavior on average; a 75% and 100% confidence score
means the detection level is at Tactic and Technique, respectively.
For instance, Input Capture has a perfect analytic coverage score,
while it only has a 61.7% confidence score in Carbanak+Fin7 (2020)
evaluation, suggesting most of the detection levels are between
General Behavior and Tactic. Other Credential Access techniques
like Unsecured Credentials and Credentials from Password Stores also
have discrepancies in analytic coverage and confidence.

Interestingly, the techniques that receive the highest and lowest
confidence scores are all in Credential Access or Discovery tactics.
OS Credential Dumping and Network Share Discovery receive above
90% confidence scores, whereas Credentials from Password Stores

and Permission Group Discovery obtain below 30% confidence scores.
All EDR systems can identify malicious behaviors related to OS
Credential Dumping and Network Share Discovery and complement
alarms with additional context like motivations and techniques
used. On the contrary, EDR systems struggle to set off alarms for
malicious behaviors related to Credentials from Password Stores and
Permission Group Discovery, let alone providing additional context.

The techniqueWeb Service has a significantly lower confidence
score than its analytic coverage score. This suggests the alarms
on Web Service fail to provide detailed contexts, like the motiva-
tion of such behavior or the specific technique used. Such vague
alarms usually require system administrators to spend more time
investigating and responding. On the other hand, techniques like
Exfiltration Over C&C Channel remarkably higher confidence scores
than its analytic coverage score, which implies detection on Ex-
filtration Over C&C Channel comes with a satisfying amount of
details although the number of generated alarms is relatively low.

For EDR systems, the confidence scores and analytic coverage
scores also share the general trend but with a few outliers. We
calculate the confidence-analytic difference across all EDR systems
participating in Carbanak+Fin7 (2020) evaluation to further investi-
gate their detection confidence. CyCraft has a notably lower confi-
dence score than the analytic coverage score, suggesting CyCraft
puts more emphasis on detection coverage than other contexts. On
the contrary, EDR systems like Sophos and AhnLab have much
higher confidence scores than their analytic coverage score, which
suggests they value the context provided in detection more than
the coverage. Top performers like Palo Alto Networks, Sentinel
One, and CheckPoint have about the same confidence score and
analytic coverage score, which implies their detection has satisfying
coverage and abundant details.

Comparing the distribution of confidence scores over the three
years in Fig. 3 and 4, the technique median confidence score im-
proved from 50% in APT29 to 72% in Carbanak+Fin7, and finally to
88.25% in Wizard Spider+Sandworm. The confidence score distri-
butions exhibited a decrease in range while shifting towards the
higher end. This implies a significant enhancement in the level of
detail with the detection. In the APT29 (2019) evaluation, only 50%
of the attack steps can be detected at the General Behavior level
or above by all EDR systems on average; however, in the Wizard
Spider+Sandworm (2022) evaluation, 75% of the attack steps can be
detected at the Technique level on average.

Finding 6: Different amounts of details in alarms reflect EDR
systems’ detection confidence. Throughout the five evaluations,
EDR systems are less confident to trigger alarms on techniques
that widely exist in everyday activities such as Email Collection,
Exfiltration Over C&C Channel, and Ingress Tool Transfer. Thus,
EDR systems tend to provide less contextual information, like
their roles in the attack chain. On the contrary, EDR systems are
more confident in detecting typical malicious behaviors like OS
Credential Dumping and Network Sniffing. EDR systems’ overall
detection confidence has improved remarkably, as shown in Fig.
3 and 4.
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Table 3: Data Sources in MITRE Evaluations

Campaign # of Data Source Top 5 Data Sources
APT29 (2019) 9 File, Command, Process, Script, Network Traffic
Carbanak+FIN7 (2020) 25 Process, File, Network Traffic, Script, OS API Execution
Wizard Spider+Sandworm (2022) 41 Process, File, Network Traffic, OS API Execution, Logon Session

5.3 Detection Quality
We calculated the quality metric for techniques and EDR systems in
the recent three evaluations, as shown in Fig. 3 and 4, respectively.
The detection quality score has been increasing over the years. Cre-
dentials from Password Stores receive the lowest quality score (54.2%)
in the Carbanak+Fin7 evaluation, which suggests significant delay
and manual efforts are involved. In this scenario, the credentials
stored in the Chrome web browser are accessed via a malicious
tool. This technique has a fairly low Visibility score and analytic
coverage score. Even when it is detected, it usually requires human
analysis. Other techniques with low quality scores (below 60%) in-
clude Inter-Process Communication, Credentials from Password Store
and Data from Local System, which require modifying detection
policies depending on the local environments. We suspect failures
in detecting this technique are also related to systems’ weak ability
to link individual events to an attack chain. While accessing the cre-
dentials stored in the browser itself doesn’t seem very suspicious,
downloading an unknown tool and using it to access credentials
makes it very suspicious.

OpenText and DeepInstinct receive the lowest quality score
(around 60%) among the EDR systems, while some EDR systems
like SentinelOne, ReaQta, and CyCraft obtain close perfect qual-
ity scores in the Carbanak+Fin7 evaluation. The score differences
imply EDR systems’ various self-adapting abilities. Systems with
high quality scores can work effectively in different environments
without much human intervention, while systems with low quality
scores require a lot of manual tuning and analysis.

Finding 7: EDR systems often require extra manual effort to
detect techniques that are closely integrated with local environ-
ments, such as Credentials from Password Stores and Inter-Process
Communication. Only four tested systems in the Wizard Spi-
der+Sandworm (2022) evaluation do not require extra effort to
detect such techniques.

5.4 Data Source
The number of distinct data sources has been changing over the
years. No data source information is available in the APT3 evalua-
tion (2018). Since the APT29 evaluation (2019), MITRE has started to
collect data source information in the detection results. As shown in
Table 3, nine distinct data sources are recorded in the APT29 evalu-
ation results, whereas in the most recent Wizard Spider+Sandworm
evaluation (2022), 41 different data sources are recorded. As the
number of distinct data sources increases over the years, not only
do the existing data sources become more specific, but some new
data sources are also included in the data sources. At the same time,
the taxonomy of data sources has been changing. In the APT29
and Wizard Spider+Sandworm evaluations, the data sources are
recorded in category: sub-category format. In contrast, in the Car-
banak+FIN7 evaluation, the data sources are recorded as category

without further sub-categories. In the APT29 evaluation, the data
sources are from the process, file, registry key, and network con-
nection creations, as well as script and command line executions.
In the Wizard Spider+Sandworm evaluation, network-related data
sources include network connection creation, traffic content, and
traffic flow. Besides, additional data sources, such as firewall meta-
data and network share access, are included. Our findings in §5.1
demonstrated such enrichment in data sources has a positive cor-
relation with the improvement in the detection performance over
the years.

Finding 8: Increasing complexity and variety of data sources
suggest EDR systems can utilize extensive information from
different dimensions. Although an increasing number of data
sources are used, the top data sources remain unchanged. Process,
file, network, scripts, and system calls/APIs are still the most
fundamental and valuable data sources for EDR systems.

5.5 Compatibility
In the first two evaluations, APT3 and APT29, the target environ-
ments only contain Windows hosts; thus, all participants must
support the Windows platform. Starting from the Carbanak+Fin7
evaluation in 2020, MITRE enrich the variety of target environ-
ments by including Linux servers as parts of the target system. In
the Carbanak+Fin7 evaluation, 22 out of 29 participants supported
the Linux platform. In the following Wizard Spider+Sandworm
evaluation, 22 out of 30 participants supported the Linux platform.

In §4.2, we found EDR systems had a low protection rate against
attacks on Linux. The attack on the Linux platform follows a similar
pattern to the ones on Windows: uploading a payload and using
it to establish C&C connections. Given the attacks have similar
visibility and attack pattern, most vendors can protect against the
attacks on Windows, but the attacks on Linux were only blocked
by around half of the EDR systems.

Finding 9: Data collection and protection capability needs im-
provement on the Linux platform since around 25% of the evalu-
ated EDR products don’t support the Linux platform. For similar
attack patterns, EDR products present worse protection results
on Linux than on Windows.

6 RELATEDWORK
6.1 Endpoint Detection and Response (EDR)
An increasing number of researches on endpoint security solu-
tions have been conducted to improve APT defense methods and
forensics technologies on various platforms. EDR frameworks like
HOLMES [32], Poirot [31], MORSE[25], and others [4, 21, 23, 24, 28,
38–43] aim to improve defense on Windows and Linux operating
system, while other methods like RiskRanker [20] and E-EMD [29]
target security on mobile and cloud platforms, respectively. How-
ever, they all use statistical measurements like false positive and
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true positive, precision, recall, accuracy, and F-Score, to describe the
detection performance. They also include CPU and memory usage
as measurements for overhead. However, it is hard to compare the
measurements from different works due to the different datasets
and hardware used to carry out the measurements. Surveys on
the EDR systems [5, 27, 44] mainly focus on the methodology and
dataset used but pay little attention to EDR evaluation.

In efforts to improve security evaluations, researchers have been
studying the evaluation flaws in existing security works. For in-
stance, Van Der Kouwe et al.[37] identifies a list of common bench-
marking mistakes and indicates that benchmarking flaws exist
widely in system security papers published in top venues, which
suggests the necessity of standardizing security benchmarks. Fol-
lowing those papers’ insights and suggestions, we propose our
evaluation and interpretation framework for system security work
in academia.

6.2 Security Benchmark
Most existing works mainly focus on generating representative
data sets since quality security data sets are scarce. As early as 1998,
DARPA launched its intrusion detection evaluation [15] in collabo-
ration with Lincoln Lab at MIT. Zuech et al. [45] tried to generate
network-based data sets for evaluating network intrusion detection
systems (NIDS); Divekar et al. [17] modified existing network-based
data sets to improve training performance in anomaly-based NIDS;
Almakhdhub et al. [3] targets benchmarking Internet of Things (IoT)
devices. Additionally, the data set from the DARPA Transparent
Computing program [16] has been used widely in recent security
work. Still, data from only two out of five attack campaigns are pub-
licly available, and thus the attack scenarios are minimal. Although
such data sets help mitigate the deficit in security evaluation data,
they do not provide extensive methodologies for interpreting the
results.

Some other work aims to improve the explainability of evalua-
tions. Hao et al. [22] and Mendes et al. [30] designed methodologies
to obtain more explainable evaluation results for static application
security testing (SAST) tools and web serving systems, respectively.
However, their methods are specific to the targeting tools or sys-
tems. Thus, it is hard to expand the methodologies to other security
fields.

Recently, some security studies have used the knowledge base
built by MITRE ATT&CK. Choi et al. [10] used the tactic, technique,
and procedure (TTP) proposed by MITRE ATT&CK to generate
attack sequences. On the other hand, Outkin et al. [35] use attacks
emulated in MITRE ATT&CK evaluation as the attack models to
discuss defender policy and resource allocation. Although they used
MITRE ATT&CK knowledge base, they didn’t analyze and interpret
MITRE ATT&CK evaluations.

Other commercial security ‘benchmarks’ apply miscellaneous
self-designed metrics in various testing environments, purely fo-
cusing on comparing EDR vendors on behalf of the customers
for marketing purposes. For instance, Gartner tries to address the
benchmarking challenges with its Magic Quadrant [19]. However,
the methodology is not transparent and is lack of explanation. More-
over, Gartner emphasizes secondary concerns for businesses like
value and viability, which don’t provide insights on improving the

security systems’ performance. Another attempt in the industry is
AV-Comparatives [6], which evaluates the anti-virus capabilities
of security products. However, the evaluation methodology is not
transparent like Magic Quadrant’s, and the evaluations only focus
on a narrow range of attack techniques.

7 DISCUSSION
An important problem we could not address in this paper is miss-
ing information, including but not limited to false positive alarm
volume, response time, and raw data.

False positive alarm volume is an important indicator of man-
power needed for using the EDR system [2, 36]. Low false positive
volume means most alarms are true positive so that the system
administrator can focus on mitigation. On the other hand, a high
false alarm volume means many of the alarms are false positive
alarms. Hence, the system administrator must discover true pos-
itive alarms before mitigating attacks, often leading to a needle-
in-a-haystack problem. Response time indicates the time elapsed
between compromises and alarm generation, which measures the
real-time capabilities of the EDR systems. Low response time means
the system can detect threats fast so that the system administrator
can keep the loss to a minimum. Although the delayed modifier
gives some information about the delayed alarm, it does not pro-
vide quantitative data on how long the delay is. Moreover, MITRE
only provides the detection results from the EDR systems, not the
raw data such as system logs and network events. Missing the raw
data prevents new EDR systems from using the same dataset to
compare performance with existing ones and limits the information
available to researchers when they analyze threats with poor detec-
tion coverage. Missing the information described above hinders the
analysis of EDR systems from many meaningful perspectives. We
hope MITRE could include them in the future release of evaluations.

Another concern is the prospective compatibility of our inter-
pretation framework within the context of the MITRE evaluation.
While MITRE implemented notable modifications to its evaluation
framework during the initial three rounds, the framework employed
in the latest three rounds has demonstrated sustained consistency.
Our interpretation comprehensively encompasses all elements that
have maintained this consistency throughout these rounds. There-
fore, we are confident that our interpretation frameworkwill remain
pertinent and enduring in the foreseeable future.

8 CONCLUSION
By leveraging MITRE’s evaluation efforts and introducing our anal-
ysis method, we offer valuable insights into the current capabilities
of industrial EDR systems to bridge the gap between MITRE’s raw
evaluation results and comprehensive interpretations. This research
aids researchers, practitioners, and vendors in understanding the
strengths, limitations, and areas for improvement of EDR systems,
ultimately enhancing enterprise security.
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Figure 5: The actual attack graph and the causal relation-
ship attack graph for scenario 2 inWizard Spider+Sandworm
(2022) evaluation.

A APPENDIX
A.1 Ethics
This study does not raise any ethical issues. All the datasets we
used are publicly available and anonymized.

A.2 Additional graphs
Fig. 5 is another causal relationship attack graph we constructed.
Fig. 6 shows the distribution of visibility and analytic scores of all
EDR systems. Fig. 7 shows the same distribution of all techniques.
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Figure 6: Analytics vs. Visibility Quadrant for EDR Systems
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Figure 7: Analytics vs. Visibility Quadrant for Techniques
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